Received 24 November 2006

Accepted 17 January 2007

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

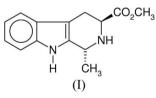
# Samina Alam,<sup>a</sup> Mashooda Hasan,<sup>a</sup> Sadaf Saeed,<sup>a</sup>\* Andreas Fischer<sup>b</sup> and Naeema Khan<sup>a</sup>

<sup>a</sup>Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and <sup>b</sup>Inorganic Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden

Correspondence e-mail: sadaf03\_2000@yahoo.com

#### **Key indicators**

Single-crystal X-ray study T = 299 KMean  $\sigma$ (C–C) = 0.003 Å R factor = 0.036 wR factor = 0.083 Data-to-parameter ratio = 9.0


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound,  $C_{14}H_{16}N_2O_2$ , was obtained from the reaction between *S*-tryptophan methyl ester hydrochloride and acetaldehyde. The molecule adopts a *trans* configuration, with the methyl and methoxycarbonyl groups located on opposite sides of the central tetrahydro- $\beta$ -carboline unit. Bifurcated intermolecular N-H···O/N hydrogen bonds link the molecules into chains.

hydro-β-carboline-3-carboxylate

trans-(1R,3S)-Methyl 1-methyl-1,2,3,4-tetra-

### Comment

Alkaloids comprise a large and complex group of naturally occurring organic compounds, many of which contain indole or indoline groups. A large number of these molecules are biologically active. For example, vincristine and vinblastine from *Catharanthus roseus* (Johnson *et al.*, 1963) have long been established as anti-tumour alkaloids of clinical significance. Others, such as reserpine (Bein, 1953) and ajmaline (Petter & Engelmann, 1974), exhibit important cardiovascular effects. Tetrahydro- $\beta$ -carbolines have been isolated from *Vinca theiodora* and other plants of South American origin and employed by Indian tribes as botanical source of intoxicating snuffs (Agurell *et al.*, 1969). Recently, tetrahydro- $\beta$ -carbolines have been found in chocolate and cocoa (Herraiz, 2000). We report here the crystal structure of the title tetrahydro- $\beta$ -carboline compound, (I).



The molecule adopts a *trans* configuration (Fig. 1), with the methyl and methoxycarbonyl groups located on opposite sides of the central tetrahydro- $\beta$ -carboline unit. The geometry of the molecule is unexceptional, and closely comparable to that observed for the 1-(2-methylpropenyl) derivative (Bailey *et al.*, 2001). Hydrogen bonds are formed between molecules (Table 1), with N1-H1N acting as bifurcated donor to two acceptors, N2<sup>iii</sup> and O1<sup>iii</sup> (symmetry code in Table 1). These interactions generate chains running along the *a* axis.

## **Experimental**

*S*-Tryptophan methyl ester hydrochloride (1.0 g, 0.004 mol) and acetaldehyde (2.2 ml, 0.004 mol) were dissolved in a methanol/water solution (23 ml, 75/25%,  $\nu/\nu$ ). The mixture was refluxed for 12 h, after which time thin-layer chromatography indicated the presence of two new components [ $R_{\rm F}$  = 0.36, 0.26, chloroform/methanol (9:1)] in the

© 2007 International Union of Crystallography All rights reserved

# organic papers

reaction medium. The reaction mixture was cooled and the solvent evaporated under vacuum. The residue was dissolved in 14% ammonium hydroxide, extracted with chloroform and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to leave an oil (yield 0.69 g, 72%). The diastereomeric *cis:trans* ratio was found to be 40:60 by <sup>1</sup>H NMR. The oil separated into ether-soluble and ether-insoluble parts. On crystallization from chloroform, the ether-soluble part gave the *cis* isomer as a light yellow solid [yield 0.23 g, 29%; m.p. 347–349 K;  $R_{\rm F}$  0.36, chloroform-methanol (9:1)]. Crystallization of the ether-insoluble part from methanol gave colourless crystals of the *trans* isomer, (I) [yield 0.46 g, 43%; m.p. 466–468 K;  $R_{\rm F}$  0.26, chloroform/methanol (9:1)].

Z = 4

 $D_x = 1.325 \text{ Mg m}^{-3}$ 

Mo Ka radiation

Block, colourless

 $0.60 \times 0.24 \times 0.14 \text{ mm}$ 

 $\mu = 0.09 \text{ mm}^{-1}$ 

T = 299 K

### Crystal data

 $\begin{array}{l} C_{14}H_{16}N_2O_2\\ M_r = 244.29\\ \text{Orthorhombic, } P2_12_12_1\\ a = 7.9948 \ (10) \text{ \AA}\\ b = 9.6751 \ (10) \text{ \AA}\\ c = 15.8301 \ (8) \text{ \AA}\\ V = 1224.5 \ (2) \text{ \AA}^3 \end{array}$ 

Data collection

Bruker–Nonius KappaCCD diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: none 12651 measured reflections

### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.036$   $wR(F^2) = 0.083$  S = 1.101468 reflections 164 parameters H-atom parameters constrained

| 1274 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.057$ |
|-------------------------------------------------------------|
| $\theta_{\rm max} = 26.5^{\circ}$                           |
|                                                             |
| $4 = \frac{2}{2} (\pi^2) + (0.022 \pi)^2$                   |
| $w = 1/[\sigma^2(F_o^2) + (0.032P)^2]$                      |

1468 independent reflections

 $\begin{array}{l} & (1000 L^{2})^{+} (0.002L^{2})^{+} \\ & + 0.29P] \\ \text{where } P = (F_{o}^{-2} + 2F_{c}^{-2})/3 \\ (\Delta/\sigma)_{\max} < 0.001 \\ \Delta\rho_{\max} = 0.16 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\min} = -0.14 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: SHELXL97} \\ \text{Extinction coefficient: } 0.028 (4) \end{array}$ 

| Table 1 | I |
|---------|---|
|---------|---|

|               |          | 0   |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (À. | °). |
|               | 8        | (,  |     |

| $D - \mathbf{H} \cdots A$                                                         | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $\begin{array}{c} N1 - H1 N \cdots O1^{i} \\ N1 - H1 N \cdots N2^{i} \end{array}$ | 0.92 | 2.18                    | 2.976 (2)    | 145                                  |
|                                                                                   | 0.92 | 2.46                    | 3.142 (2)    | 131                                  |

Symmetry code: (i)  $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$ .

Due to the absence of significant anomalous scattering effects, Friedel pairs were merged prior to refinement. The absolute configuration was assigned on the basis of the unchanging *S* configuration at C11. Most H atoms were visible in difference Fourier maps, but those bound to C atoms were placed in calculated positions and allowed to ride during subsequent refinement with  $U_{iso}(H) = 1.2U_{eq}(C)$  $[1.5U_{eq}(C)$  for methyl groups]. H atoms bound to N atoms were included in their as-found positions (N1-H1N = 0.92 and N2-H2N = 0.96 Å) and allowed to ride with  $U_{iso}(H) = 1.2U_{eq}(N)$ .

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DIRAX/LSQ* (Duisenberg, 1992); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *maXus* (Mackay *et al.*, 1999).

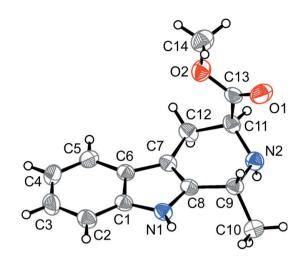



Figure 1

The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level for non-H atoms.

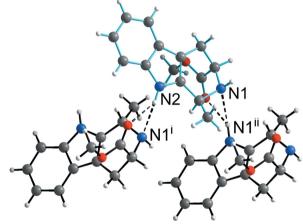



Figure 2

The hydrogen-bonding pattern in (I) (hydrogen bonds are shown as dashed lines). [Symmetry codes: (i)  $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ ; (ii)  $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ .]

MH is grateful to the Alexander Von Humboldt Foundation, Germany, for laboratory equipment.

### References

- Agurell, S., Holmstedt, B., Lindgren, J. E. & Schultes, R. E. (1969). *Acta Chem. Scand.* **23**, 903–916.
- Bailey, P. D., Cochrane, P. J., Lorenz, K., Collier, I. D., Pearson, D. P. J. & Rosair, G. M. (2001). *Tetrahedron Lett.* 42, 113–115.
- Bein, H. J. (1953). Experientia, 9, 107-110.
- Brandenburg, K. (2006). *DIAMOND*. Release 3.1d. Crystal Impact GbR, Bonn, Germany.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Herraiz, T. (2000). J. Agric. Food Chem. 48, 4900-4904.
- Johnson, I. S., Armstrong, J. G., Gorman, M. & Burnett, J. P. (1963). Cancer Res. 23, 1390–1427.
- Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Nonius BV, Delft, The Netherlands, MacScience Co. Ltd, Japan, and The University of Glasgow, Scotland.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Petter, A. & Engelmann, K. (1974). Arzneim.-Forsch. 24, 876-880.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.